Why pandas pivot_table returns unexpected results (and how to fix it)
Unexpected results in pandas pivot_table usually appear in real-world datasets from SQL exports or APIs, where duplicate index values exist. This leads pandas to generate inconsistent aggregations, often silently breaking downstream logic.
Quick Answer
Pandas pivot_table returns unexpected results when duplicate index values exist, causing inconsistent aggregations. Fix by removing duplicates or using the ‘aggfunc’ parameter.
TL;DR
- Duplicate index values cause inconsistent aggregations
- This is expected behavior, not a pandas bug
- Always validate index uniqueness explicitly
- Aggregate or deduplicate before pivoting
Problem Example
import pandas as pd
df = pd.DataFrame({'id': [1,1,2], 'val': [10,20,30], 'amt': [100,200,300]})
print(f"df: {len(df)} rows")
pivot = pd.pivot_table(df, index='id', values='val', aggfunc='sum')
print(f"pivot: {len(pivot)} rows")
print(pivot)
# Output: Inconsistent aggregations due to duplicate 'id'
Root Cause Analysis
The DataFrame contains duplicate index values. Pandas performs an aggregation for each unique index value, but duplicate values can cause inconsistent results. This behavior is consistent with standard relational aggregation principles and often surprises developers transitioning from procedural logic to declarative queries. Related factors:
- Multiple rows with same key in DataFrame
- Aggregation function not specified
- No validation on index uniqueness
How to Detect This Issue
# Check for duplicates in index
dup_count = df['id'].duplicated().sum()
print(f'Duplicates in index: {dup_count}')
# Show duplicate keys
if dup_count > 0:
print(df[df.duplicated(subset='id', keep=False)])
Solutions
Solution 1: Remove duplicates before pivot
df_clean = df.drop_duplicates(subset='id', keep='first')
pivot = pd.pivot_table(df_clean, index='id', values='val', aggfunc='sum')
Solution 2: Specify aggregation function
pivot = pd.pivot_table(df, index='id', values='val', aggfunc='sum')
Solution 3: Validate during pivot
# No direct validate parameter in pivot_table, use groupby instead
grouped = df.groupby('id')['val'].sum().reset_index()
Why validate Parameter Fails
Using groupby instead of pivot_table can help validate index uniqueness. This is not a bug — it is pandas protecting you from inconsistent aggregations. If the relationship is expected to be one-to-many, use groupby with the appropriate aggregation function.
Production-Safe Pattern
pivot = pd.pivot_table(df, index='id', values='val', aggfunc='sum')
assert pivot.index.is_unique, 'Pivot has duplicate index values'
Wrong Fixes That Make Things Worse
❌ Dropping duplicates after the pivot: This hides the symptom but corrupts your data
❌ Using a different aggregation function ’to be safe’: This introduces incorrect results and breaks assumptions
❌ Ignoring index uniqueness: Always assert expected index uniqueness after pivot
Common Mistakes to Avoid
- Not checking for duplicates before pivot
- Not specifying aggregation function
- Ignoring index uniqueness
Frequently Asked Questions
Q: Why does pandas pivot_table return unexpected results?
When the DataFrame contains duplicate index values, pandas creates inconsistent aggregations.
Q: Is this a pandas bug?
No. This behavior follows standard relational aggregation principles. Pandas is correctly preserving index uniqueness.
Q: How do I prevent duplicate index values in pandas pivot_table?
Remove duplicates from DataFrames using drop_duplicates() before pivoting, or use the ‘aggfunc’ parameter to specify the aggregation function.
Related Issues
→ Fix pandas pivot_table values parameter missing → Fix pandas merge using index gives wrong result → Fix pandas drop_duplicates keeps wrong row → Fix pandas left join returns unexpected rows
Next Steps
After addressing duplicate-key aggregation issues, do the following:
- Add a pipeline check that detects duplicate keys before pivoting and emits a clear warning or error.
- Add unit tests that compare
pivot_tableresults with an explicitgroupby(...).agg(...)baseline for representative inputs. - If the relationship is many-to-one, prefer
groupbywith an explicitaggfuncand document the data invariants. - Add a lightweight data-quality test in CI to fail on unexpected duplicate-key counts for critical tables.